
Expectation and Other Parameters  Page 1 of 3 

Expectation and Other Parameters 
 
Expectation (denoted ,],[ XXE µ or µ ) – For a random variable X, the 
expectation of X (aka expected value of X, or mean of X) is the weighted 
average of the values of supp(X). The weights are the corresponding values 
of the pdf.   
 
For a discrete random variable we have  
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For a continuous random variable we have 
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If h is a function of the random variable X, then the expectation of h(X) is 
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Notice that the expectation formulas above are a special case of these 
formulas with h(X) = X. 
 
Example:  Suppose X is a discrete random variable with p(0) = 0.5,  
p(1) = 0.2, and p(4) = 0.3.  Find E[X0.5 ], and separately find E[3X + 2]. 
 
Let’s again draw a probability distribution table. 
 

X X0.5 3X + 2 p(x) 
0 0 2 0.5 
1 1 5 0.2 
4 2 14 0.3 

Then 8.03.022.015.00][][ 5.0 =⋅+⋅+⋅== XEXE  and 
.2.63.0142.055.02]23[ =⋅+⋅+⋅=+XE   Notice that since  
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.2][3]23[ +=+ XEXE   In general, we have the formula 
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constants. 
 



Expectation and Other Parameters  Page 2 of 3 

Other Distribution Parameters and Relationships Among Them 
The nth moment of the random variable X is defined to be ].[ nXE   If the 
mean of X is ,µµ =X  then the nth central moment of X about the mean µ  is 
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The variance of the random variable X is denoted by Var(X), V(X), ,2Xσ  or 
,2σ  and is defined to be the 2nd central moment of X about the mean µ .   

We have 
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An important property of the variance is that if ,baXY +=  where a and b are 
constants, then 
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The standard deviation of the random variable X is the square root of the 
variance and is thus denoted by Xσ  or .σ   In symbols, 
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The coefficient of variation of the random variable X is the ratio of the 
standard deviation of X to the mean of X.  In symbols, 
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The median of a distribution is the 50th percentile of the distribution. 
 
The mode of a distribution is any value of the random variable X  at which 
the pdf is maximized. 
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The moment generating function (mgf) of the random variable X is denoted 
),(tMX  ),(tmX  ),(tM  or )(tm  and is defined to be ].[)( tX
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Properties of mgf’s: 
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 2.  If 1X  and 2X  are random variables and )()(

21
tMtM XX = , then 

       .~ 21 XX  
 
 3.  ),0(|)(][ 0 XtX MtM

dt
dXE ʹ′== =  and in general ).0(][ )(n

X
n MXE =  
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Chebyshev’s Inequality: If X is a random variable with mean µ  and standard 
deviation σ  then for any real number r > 0 we have 
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A picture is worth a thousand words: 
 
 
 
 
 
 


