Expectation and Other Parameters

Expectation (denoted $E[X], \mu_X$, or μ) – For a random variable X, the expectation of X (aka expected value of X, or mean of X) is the weighted average of the values of supp(X). The weights are the corresponding values of the pdf.

For a discrete random variable we have

$$E[X] = \sum_{x \in \sup p(X)} x \cdot p(x) = x_1 \cdot p(x_1) + x_2 \cdot p(x_2) + \cdots$$

For a continuous random variable we have

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

If X is non-negative, it can be shown that $E[X] = \int_0^\infty x \cdot f(x) dx = \int_0^\infty S(x) dx$.

- If *h* is a function of the random variable *X*, then the expectation of h(X) is
 - *i*) If X is discrete, $E[h(X)] = \sum_{x \in \text{sup} p(X)} h(x) \cdot p(x)$

ii) If X is continuous, $E[h(X)] = \int_{-\infty}^{\infty} h(x) \cdot f(x) dx$.

Notice that the expectation formulas above are a special case of these formulas with h(X) = X.

Example: Suppose X is a discrete random variable with p(0) = 0.5, p(1) = 0.2, and p(4) = 0.3. Find $E[X^{0.5}]$, and separately find E[3X+2].

Let's again draw a probability distribution table.

X	$X^{0.5}$	3X + 2	p(x)
0	0	2	0.5
1	1	5	0.2
4	2	14	0.3

Then $E[X^{0.5}] = E[\sqrt{X}] = 0.05 + 1.02 + 2.03 = 0.8$ and

 $E[3X + 2] = 2 \cdot 0.5 + 5 \cdot 0.2 + 14 \cdot 0.3 = 6.2$. Notice that since

E[X] = 0 + 0.2 + 1.2 = 1.4, then $E[X^{0.5}] \neq (E[X])^{0.5}$. However we do have that E[3X + 2] = 3E[X] + 2. In general, we have the formula

 $E[a \cdot g(X) + b \cdot h(X) + c] = a \cdot E[g(X)] + b \cdot E[h(X)] + c$ where *a*, *b*, and *c* are constants.

Other Distribution Parameters and Relationships Among Them

The n^{th} moment of the random variable X is defined to be $E[X^n]$. If the mean of X is $\mu_X = \mu$, then the n^{th} central moment of X about the mean μ is $E[(X - \mu)^n]$.

The variance of the random variable X is denoted by Var(X), V(X), σ_X^2 , or σ^2 , and is defined to be the 2nd central moment of X about the mean μ . We have

$$Var(X) = E[(X - \mu)^{2}] = E[X^{2} - 2\mu X + \mu^{2}] = E[X^{2}] - 2\mu E[X] + \mu^{2} = E[X^{2}] - (E[X])^{2}$$

An important property of the variance is that if Y = aX + b, where *a* and *b* are constants, then

$$Var(Y) = Var(aX + b) = a^2 Var(X).$$

The standard deviation of the random variable X is the square root of the variance and is thus denoted by σ_x or σ . In symbols,

$$\sigma_X = \sqrt{Var(X)}$$

The coefficient of variation of the random variable X is the ratio of the standard deviation of X to the mean of X. In symbols,

$$CV_X = \frac{\sigma_X}{\mu_X}$$

The median of a distribution is the 50th percentile of the distribution.

The mode of a distribution is any value of the random variable X at which the pdf is maximized.

The moment generating function (mgf) of the random variable X is denoted $M_X(t)$, $m_X(t)$, M(t), or m(t) and is defined to be $M_X(t) = E[e^{tX}]$.

Properties of mgf's:

- 1. $M_X(0) = 1$
- 2. If X_1 and X_2 are random variables and $M_{X_1}(t) = M_{X_2}(t)$, then $X_1 \sim X_2$.
- 3. $E[X] = \frac{d}{dt} M_X(t)|_{t=0} = M'_X(0)$, and in general $E[X^n] = M_X^{(n)}(0)$.
- 4. If we define $R_X(t) = \ln(M_X(t))$, then

$$R'_{X}(0) = \frac{d}{dt}R_{X}(t)|_{t=0} = \frac{M'_{X}(t)}{M_{X}(t)}|_{t=0} = \frac{M'_{X}(0)}{M_{X}(0)} = \frac{E[X]}{1} = E[X], \text{ and similarly}$$
$$R''_{X}(0) = Var(X)$$

Chebyshev's Inequality: If *X* is a random variable with mean μ and standard deviation σ then for any real number r > 0 we have

$$\Pr(|X - \mu| > r \cdot \sigma) \le \frac{1}{r^2}$$

A picture is worth a thousand words: